Mathematical Analysis - List 7

1. Find the vertical and oblique asymptotes of each function:
a) $f(x)=\frac{x^{3}+x^{2}}{x^{2}-4}$;
b) $f(x)=\frac{x-3}{\sqrt{x^{2}-9}}$;
c) $f(x)=\frac{\sin x}{x-\pi}$;
d) $f(x)=\frac{\sqrt{1+x^{2}}}{x}$;
e) $f(x)=\frac{x^{3}}{(x+1)^{2}}$;
f) $f(x)=\frac{1-x^{2}}{x+1}$.
2. Find numbers $a, b \in \mathbb{R}$ such that the function $f(x)$ is continuous at the given points.
a) $f(x)=\left\{\begin{array}{lll}\sin x & \text { for }|x| \geqslant \frac{\pi}{2}, & x_{1}=-\frac{\pi}{2}, \\ a x+b & \text { for }|x|<\frac{\pi}{2}, & x_{2}=\frac{\pi}{2} ;\end{array}\right.$

c) $f(x)= \begin{cases}b x^{2}+a & \text { for } x \leqslant 0, \\ \frac{5^{x}-3^{x}}{a x} & \text { for } x>0, \quad x_{0}=0 .\end{cases}$
3. Find the points at which the function is discontinuous.
a) $f(x)= \begin{cases}\frac{x^{2}-1}{\sqrt{x}-1} & \text { for } x \in[0,1) \cup(1, \infty), \\ 3 & \text { for } x=1 ;\end{cases}$
b) $f(x)= \begin{cases}\frac{|x|+x}{x^{2}} & \text { for } x \neq 0, \\ 0 & \text { for } x=0 ;\end{cases}$
c) $f(x)=\operatorname{sign}[x(x-1)]$;
d) $f(x)= \begin{cases}1-\cos \frac{1}{x} & \text { for } x \neq 0, \\ 0 & \text { for } x=0 .\end{cases}$
4. Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.
a) $x^{3}+6 x-2=0, \quad(0,1)$;
b) $x \sin x=7, \quad\left(2 \pi, \frac{5 \pi}{2}\right)$;
c) $1=\frac{\sin x}{2}+x, \quad\left(0, \frac{\pi}{2}\right)$;
d) $x^{100}+x-1=0, \quad\left(\frac{1}{2}, 1\right)$.

Find the root in a) correct to two decimal places.

